
Scam Detection Assistant: Automated
Protection from Scammers

Myeongsoo Kim
Kookmin University

myron89@kookmin.ac.kr

Changheon Song
Seoul National University

chsong@idb.snu.ac.kr

Hyeji Kim
Kookmin University

95kimhyeji@gmail.com

Deahyun Park
Kookmin University

eodhs0@kookmin.ac.kr
Yeeji Kwon

Seoul Women’s University
yeeji77@naver.com

Eun Namkung
Kookmin University
nk8355@gmail.com

Ian G. Harris
University of California Irvine

harris@ics.uci.edu

Marcel Carlsson
Lootcore

mc@lootcore.com

Abstract—Scams, also known as social engineering at-
tacks, are an extremely common and dangerous threat
today. Scams typically result in financial loss by convincing
a victim to perform an ill-advised action such as sending
money, or convincing him to provide private information.
In this paper we present an approach to detect scams,
focusing on scams which are conveyed in-person, over
the phone, or via text/chat message. We present a tool
called Scam Detection Assistant (SDA) which analyzes
attack content to detect inappropriate statements which
are indicative of social engineering attacks. A great deal of
previous research in the detection of scams focuses on the
detection of email scams, phishing emails. Previous work
relies heavily on the analysis of various metadata specific
to the email attack vector, including header information
and URL links. SDA is novel compared to previous work
because it focuses on the natural language contained in the
attack, performing semantic analysis of the content to detect
malicious intent. Focusing on content analysis makes our
approach applicable to detect scams using non-email attack
vectors, including texting applications, chat applications,
and phone/in-person attacks which have been converted to
text using a speech-to-text application.

I. INTRODUCTION

A critical threat to the security of individuals and orga-
nizations is the increasing rate of scams which are being
perpetrated each year. In the year 2016, a total of 9.5
billion dollars was lost in the USA due to phone scams
alone [16]. The more formal term used for scamming
is social engineering, the psychological manipulation of
people in order to gain access to a system for which
the attacker is not authorized [10], [18]. Numerous ex-
perimental studies over the years have demonstrated the
susceptibility of people to social engineering attacks [8],
[13], [24], [19], [1]. The use of modern communication
technologies, including cellular phones and the internet,
have greatly increased the reach of an attacker, and the
effectiveness of the attack.

Scams involve communication between the attacker
and the victim in order to either elicit some infor-

mation, or persuade the victim to perform a critical
action. Information gathered might include explicitly
secure information such as a credit card number, or
seemingly innocuous information which can support a
larger attack, such as the name of a coworker. An attacker
might also convince the victim to perform tasks which
would support an attack, such as going to a website.
The effectiveness of social engineering has encouraged
attackers to use it more frequently, relying on social
engineering as a component of larger attacks. Scams are
becoming larger and more ambitious each year, such as
the IRS phone scam [11] which convince people to wire
money in order to pay a debt to the Internal Revenue
Service, the federal tax collection agency in the USA.

Scams are conveyed by many methods including in-
person, phone, chat/text, and via email. Most previous
work in the detection of scams focuses on email-based
“phishing” scams, but non-email scams are potentially
more dangerous. The nature of communication via these
non-email attack vectors is substantially different from
email-based communication, and offers many additional
options to the attacker. Email communication is not real-
time. When an email is received, a response is not
necessarily expected immediately, if at all. Non-email
communication involves two-way conversation in which
each speaker is expected to respond immediately. From
an attacker’s point of view, conversations are a useful
tool because it pressures the victim to respond without
spending time considering the consequences. The feed-
back received by the attacker during the conversation
enables the attacker to get a feel for the mood of the
victim and adjust the attack accordingly. This allows non-
email social engineering attacks to be more personalized
and therefore more effective than phishing emails.

Existing approaches for automatic detection of social
engineering attacks focus on the detection of phishing
emails. These techniques rely heavily on the analysis

978-1-7281-3345-4/19/$31.00 c© 2019 IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 18,2023 at 19:52:23 UTC from IEEE Xplore. Restrictions apply.

of non-content metadata which is found in email, such
as contained hyperlinks and SMTP headers. These tech-
niques are not effective for detecting non-email social
engineering attacks which are not associated with acces-
sible metadata. When there is no metadata to rely on,
non-email social engineering attacks must be detected
by analyzing the content of the communication. Content-
based approaches do exist which analyze features of the
content such as character frequency and word/n-gram
frequency. However, these approaches do not attempt
semantic analysis to extract the meaning the text, and
the intent of the attacker. Without semantic analysis, the
use of existing content-based metrics alone would result
in low precision and accuracy.

A. Our Contribution

We present an approach, Scam Detection Assistant
(SDA), which analyzes the text of a conversation in order
to determine if it a scam is being perpetrated. In order
to detect a broad range of social engineering attacks
using a range of communication vectors, we use semantic
analysis to understand essential aspects of the meaning
of the communication. Our approach identifies sentences
with malicious intent in the communication from the
potential attacker.

In order for the attacker to achieve his goal, the
attacker must perform one of the following detectable
actions.

• Ask a question whose answer is private.
• Issue a command to perform a forbidden operation.

Our approach identifies all statements which are either
questions or commands posed to the victim, and checks
the appropriateness of the statement. A question is con-
sidered to be inappropriate if it requests private informa-
tion, and a command is considered to be inappropriate if
it involves the performance of a secure operation.

Our approach to the detection of inappropriate ques-
tions leverages research in question answering systems
to determine the privacy of the answers to questions
posed by the attacker. We use question answering tech-
nology to provide the privacy status of the answer,
rather than providing the answer itself, as is the goal
of traditional question answering systems. The actual
answer of each question is not needed, so our approach
can tolerate imprecision inherent to current question
answering approaches and still achieve high precision
with respect to privacy status.

We evaluate commands by summarizing their mean-
ing as a combination of the main verb and the object(s)
of that verb in the sentence. For example, the meaning
of the command, “Please reset the router” would be
summarized by the verb-object pair (reset, router). This
verb-object pair will be compared to a blacklist of verb-

object pairs which are known to describe forbidden
operations. Reducing the meaning of a command to the
verb-object pair is beneficial as a method to normalize
the description of sentences with different syntaxes but
identical meaning. By considering synonyms and lemma-
tization as well, the set of all forbidden operations can
be stored in a compact blacklist.

B. Authentication

Authentication is outside of the scope of this work,
so our approach assumes that the party communicating
with the victim is unknown to the victim. The type of
trust relationship which a person has with other entities
will impact what information is considered private and
which operations are considered secure. For example, a
close friend can ask for some private information while a
stranger cannot. Considering the impact of identity on the
privacy of data and operations requires an authentication
approach. Since authentication is outside of the scope of
this work, we determine the privacy of data and opera-
tions assuming that access is requested by an unknown
and untrusted entity. Although our approach is limited in
this way, it could easily be extended to consider a more
graduated notion of privacy by using it together with an
existing authentication approach.

C. Scam Data

Several parts of our approach require mining of actual
scams as part of the training process. Scams are also
required to evaluate the effectiveness of our approach.
The databases of phishing emails summarized in Table
I are publicly available, so those are what we have used
to develop and evaluate our work. Since our approach
is content-based, it can be applied to non-email social
engineering attacks as well, but we were limited to the
phishing email databases since non-email scam examples
are not publicly available. All online databases were
accessed October 11, 2017.

Database URL Size
Scamdex http://www.scamdex.com 56555
Scamwarners http://www.scamwarners.com 43241
Scamalot http://scamalot.com 18149
Antifraudintl http://antifraudintl.com 69209
Total 187154

TABLE I
SOCIAL ENGINEERING ATTACK DATA

D. Structure of the System

Figure 1 shows the structure of the SDA system. The
input to the system is a block of text uttered by a potential
attacker. The text may be extracted from any means of
transmission including email, texting application, phone,

2
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 18,2023 at 19:52:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Scam Detection Assistant (SDA) structure

or in-person. Text extracted from either phone or in-
person communication would need to be transcribed
using an existing speech-to-text engine. The output of the
system is a set of malicious sentences which are deter-
mined to either ask questions whose answers are private,
or issue commands to perform forbidden operations. The
original text is identified as a social engineering attack
if the set of malicious sentences is non-empty.

The system as shown in Figure 1 is composed of five
main components. The Sentence Processing step sepa-
rates the text into individual sentences and parses each
sentence in order to gather information about sentence
components which will be used for analysis by other
system components. Separating individual sentences is
straightforward if proper punctuation is used in the orig-
inal text, but we assume that proper punctuation cannot
be assumed in the original text. This is particularly true
if the text is taken from an acoustic source such as a
phone or in-person conversation.

The Sentence Type Identification step determines
whether each sentence is a question or a command,
and places the sentence in the appropriate set for fur-
ther analysis. Sentences which are neither questions nor
commands are ignored. The Question Analysis step
determines whether or not a question has a private
answer, and Command Analysis determines whether or
not a command refers to a forbidden operation.

Text may include utterances which do not express
questions in isolation, but are understood to be ques-
tions based on the context within the text. Examples of
such utterances are the items in a questionnaire where
each individual item is not a question, but the context
tells the listener that the item should be treated as a
question and an appropriate answer is expected. For
example, an attacker might make the following state-
ments, “Please give me the following information. Name.
Address. Phone”. This statement should be treated as

three questions requesting the “Name”, “Address”, and
“Phone”. We refer to these implied questions as form
questions and the Form Item Detection step identifies
utterances which represent implicit questions because
they are items in a form. Each form item is used to
generate an equivalent question which can be evaluated
in the Question Answering step.

E. Organization of the Paper

The central components of this work are the Ques-
tion Analysis and Command Analysis steps, so our
description will focus on those steps and the Sentence
Type Identification step which determines the type of
analysis required for each sentence. However, our results
are generated using all steps shown in Figure 1.

The remainder of this paper is organized as follows.
Section II describes sentence type identification, Section
III describes question analysis, and Section IV describes
command analysis. Section V shows our experimental
results. A discussion of the results is presented in Section
VI Previous related research is summarized in Section
VII and conclusions are discussed in Section VIII.

II. SENTENCE TYPE IDENTIFICATION

Questions and commands are the types of sentences
which are of interest because they might refer to private
data or private operations. The identification of questions
and commands analyzes the words in the sentence and
the syntactic and typed dependency parse trees of the
sentence which were created in the Sentence Processing
step.

Question detection is straightforward using the syn-
tactic parse tree of the sentence. There are two types
of questions and each type can be recognized by the
presence of specific tags in their syntactic parse tree.
Closed questions are those whose answers are ”yes” or
”no”. Closed questions are identified by the presence of
the SQ tag in their parse tree. Open questions are those

3
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 18,2023 at 19:52:23 UTC from IEEE Xplore. Restrictions apply.

which ask open ended questions, typically containing a
wh-word such as ”who” or ”where”. Open questions are
identified by the presence of the SBARQ tag in their
parse tree.

We present four different types of commands, each of
which is identified in a different way.

• Direct imperatives - Commands are made using
imperative sentences which generally start with the
base form of the verb, as in “Open the door” or
“Come in”. The imperative form is a second-person
form, so the subject is the person being spoken to.
Direct imperative sentences often do not include an
explicit subject because the subject is assumed to
be the listener.
Direct imperatives are identified if they match a reg-
ular expression of the form “¡verb¿ ...”, indicating
that the sentence starts with a verb.

• Polite prefixes - Simple imperative sentences can
sound rude, so an attacker may desire to soften
the request by prefixing the command with a polite
greeting, such as, “Please go home”.
Polite prefix imperatives are identified if they match
a regular expression of the form “Please ¡verb¿ ...”,
indicating that the sentence starts with the word
“Please” followed by a verb.

• Suggestion - Rather than directly commanding a
victim to perform an action, the command may be
phrased as a suggestion which the victim should
follow, such as, “You could open the door” or “You
should go home”.
Suggestion imperatives are identified if they match
a regular expression of the form “You ¡modal verb¿
...”, indicating that the sentence starts with the word
“You” followed by a modal verb such as “should”,
“could”, or “must”.

• Expression of desire - Another way to soften a
command is to prefix it with an expression of desire
such as “I want you to come in” or “I urge you to
come in”.
The detection of commands which express desire
is performed based on two observations, 1) the
sentence must include a desire verb such as “urge”
or “encourage”, and 2) the pronoun “you” is the
direct object of the desire verb. The presence of a
desire verb is determined by comparing each word
in the sentence to a list of desire verbs.

III. QUESTION ANALYSIS

Our approach modifies an existing approach for ques-
tion answering to determine whether or not the answer
to a factoid question is private. We will first describe
the existing question answering approach and we will

then present our modifications to the approach to make
it suitable for use in detecting social engineering attacks.

A. PARALEX Question Answering System

The existing PARALEX question answering system
which we modified is fully described in previous work
[5] and is outlined in Figure 2. Answers are found in
an SQL database and the SQLite database engine [15]
is used to search the database for answers. The database
is a collection of triples of the form r(e1, e2), where r
is a relation and e1, e2 are entities. For example, the
fact that the population of New York City is 8.5 million
people might be stored as the triple population(new −
york, 8.5 ∗ 106). A set of formal queries are generated
from the original natural language question and the
queries are ranked according to the likelihood of being a
semantic match to the original query. The highest ranked
query is used to search the database and the matching
result is returned as the answer. Each query is in one
of two forms: either r(?, e) or r(e, ?). Searching the
database using a query returns the entity e which satisfies
the given relationship.

The challenge is to generate a formal query which is
semantically equivalent to the natural language question.
Each formal query is composed of database concepts,
specifically a relation r and an entity e. The approach
uses a lexicon to associate natural language patterns
with database concepts. Each lexicon entry has the form
(p, d), where p is a string pattern found in a natural
language question, and d is a database concept. There are
three types of entries in the lexicon: entity entries pair
strings with database entities (“NYC” and new− york),
relation entries pair strings with database relations (“big”
and population), and question pattern entries pair string
patterns with query templates (“how r is e” and r(?, e)).

A derivation is a mapping from a natural language
question to a formal query. A derivation is generated
by matching lexicon entry patterns to strings in the
natural language question. The database concepts of
the matching lexicon entries are combined to make the
query. For example, assume that we have a lexicon
containing the following two entries: (“How big is e”,
population(?, e)) and (“NYC”, new − york). Since the
question “How big is NYC?” matches both lexicon
entries, a derivation for this question would combine the
database concepts of both entries to create the query
population(?, new − york). It is important to observe
that there are often many possible derivations for a
question with a given lexicon. This happens due to noise
in the lexicon which may occur as a result of the learning
process used to generate the lexicon [5]. A lexicon
may contain entries which interpret the same natural
language string pattern in different ways. The question

4
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 18,2023 at 19:52:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. PARALEX question answering approach

How big is NYC? could be interpreted as asking about
population or asking about land area. To describe these
interpretations, the lexicon could contain both entries
(“How big is e”, population(?, e)) and (“How big is
e”, area(?, e)), leading to two possible derivations. The
Generate Derivations step shown in Figure 2 uses the
lexicon to generate all possible derivations based on
the entries in the lexicon. The queries produced by the
derivations are scored in the Score Queries step and the
top ranked query is used to search the database.

B. Modifications to Question Answering

We have modified the PARALEX question answering
approach to determine whether or not the answer to a
factoid question is private or not. We have made the
following three modifications.

1) Creating a Private Database: We replace the
database of facts with a database containing only facts
which are considered to be private. This guarantees that if
an answer to a query is found in the database, it must be
a private answer. Since the number of private facts is very
small relative to the set of answers to all possible factoid
questions, the database used to determine privacy is much
smaller than the database used in the original PARALEX
approach which contained over 15 million facts. This
system requires the creation of a database of private
information. Such a database could be created manually,
allowing a user to match the database contents to his/her
enterprise. For example, if the system is being used to
protect a medical office then the database would contain
private medical information. Since we are experimenting
with a set of phishing emails targeted at generic users,
we have created our database based on samples of those
emails.

Our procedure for creating the private database was
to manually identify private questions and from 20,000
randomly selected phishing emails, and private form
questions from 2,000 phishing emails within the larger
set of 20,000. We manually determined that a question
was private if we could not find the answer using Google.
For each private question, we presented the question to
the PARALEX tool and observed the formal queries that
it created for the question using relations and entities

already defined in its lexicon. We examined the top four
queries generated by PARALEX and inserted answers to
those queries into the private database, using the rela-
tions and entities contained in the queries. This process
guarantees that if this question or a similar question is
posed to the question answering tool, and answer will be
found in the database and the question will be identified
as being private.

2) k-best Queries: : Rather than using only the top
ranked query, we search the database using the k-best
queries. If matches are found for any of the k-best
queries, the question is considered to be private. The
chance that the correct answer will be found by one of the
top k queries is considerably higher than the top query
alone. The potential problem with this approach is that a
question whose answer is not private may be incorrectly
classified because one of the queries generated from it
does have a private answer. However this is unlikely
because private data is such a small subset of the set
of all question answers.

3) Lexicon Modification: : The original lexicon de-
veloped as part of the PARALEX system provides a
mapping from natural language strings to concepts in the
original database. Since we are changing the database,
the lexicon must be modified to map to the concepts in
the new database. The original lexicon is quite expansive,
having been generated from a corpus of over 15 million
question-answer pairs, but occasionally a new entity must
be added to the database, and appropriate entries must
be added to the lexicon. During the process of creating
the new database, we needed to define only two new
entities which were not part of the original lexicon. We
also modified only 341 lexicon entries out of a total of
over 6 million entries.

IV. COMMAND ANALYSIS

Command analysis is performed by extracting the
verb and the direct object of the command so that
the verb-object pair can be used as a summary of the
intent of the command. A command is considered to
refer to a forbidden operation if its verb-object pair
is found in a verb-object blacklist which describes
forbidden operations. Extraction of the verb and direct

5
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 18,2023 at 19:52:23 UTC from IEEE Xplore. Restrictions apply.

object is performed by examining the typed dependency
parse of the sentence which is generated during sentence
processing. The dobj dependency relation indicates the
direct object for phrases written in the active voice, and
the nsubjpass dependency relation indicates the direct
object for phrases written in the passive voice. Both the
dobj and nsubjpass dependencies relate the verb to the
direct object, so the verb-object pair is determined using
one of these two relations.

A. Generating the Verb-Object Blacklist

Command analysis depends on the existence of a
blacklist of verb-object pairs which is correct and com-
plete. The blacklist could be created manually, allow-
ing a user to match blacklist contents to his/her en-
terprise. For example, if the system is being used to
protect a bank then the blacklist would contain the pair
(give, combination). Since we are experimenting with a
set of phishing emails targeted at generic users, we have
created our blacklist based on samples of those emails.

Our goal is to find the verb-object pairs which are
most closely associated with phishing emails, but are
also most weakly associated with non-phishing emails.
For this purpose, we compute the term frequency-inverse
document frequency (TF-IDF) statistic [20] for each verb-
object pair. TF-IDF is a well accepted statistic used in
data mining and information retrieval to determine how
important a term is in a corpus. The statistic takes the
product of the term frequency which is a measure of
how often a term appears in a corpus of documents,
and the inverse document frequency which is a measure
of how often the term appears in documents outside of
the corpus. A term receives a high TF-IDF score if it is
common within the corpus, but rare outside of the corpus.

For our problem, a term is a verb-object pair in a com-
mand, and the corpus in question is a random selection of
100,000 phishing emails from the set of phishing emails
which we are using. For a set of non-corpus documents,
we use 100,000 emails in the Enron email corpus [14]
which is assumed not to contain phishing emails. All
commands are identified in both the phishing and non-
phishing emails, and all verb-object pairs are identified
in each command. The TF-IDF statistic is computed for
each verb-object pair and all verb-object pairs whose
TF-IDF is above a threshold (0.45) is included in the
blacklist. This produced a blacklist containing 508 verb-
object pairs.

In order to improve the generality of the blacklist,
we performed two additional processing steps on the
blacklist. First, we considered synonyms of each word
in the blacklist so that the use of synonyms in the
social engineering attacks will not cause a command
to be classified incorrectly. Additionally, we perform

lemmatization which reduces different forms of the same
word to their common stem. Lemmatization allows words
to be recognized regardless of the form in which they
are used in a sentence. We use the lemmatizer which
is part of the Stanford CoreNLP Toolkit [17]. After this
processing, the final blacklist contains 1709 verb-object
pairs.

V. EXPERIMENTAL RESULTS

We have evaluated SDA by implementing it and using
it to identify phishing emails. Our implementation is
primarily a Python script, using Java when necessary
to interface with a particular tool. Specifically, Java is
used to interact with the Stanford Parser and CoreNLP
[17] which have a Java API. The phishing datasets which
we use are presented in Table I and the non-phishing
emails which we use are those contained in the Enron
email corpus [14]. Of the total set of 187,048 phishing
emails, we subtract the 100,000 which we used for
creating the verb-object blacklist and creating the private
database. For evaluating SDA, we use the remaining
87,048 phishing emails and an equal number of non-
phishing emails taken from the Enron corpus.

Phishing Enron
Detected 56616 (TP) 14168 (FP)

Not Detected 30432 (FN) 72880 (TN)
TABLE II

SDA DETECTION RESULTS

Table II contains the detection results using the SDA
system. Each cell in the table contains the count of
how many emails fell into each category. The two rows
indicate the labeling applied by our tool, either Detected
or Not Detected. The two columns indicate the true
label of the email, either Phishing (social engineering) or
Enron (not social engineering). Each cell also contains
initials indicating the correctness of the labeling: TP
(true positive), TN (true negative), FP (false positive),
or (FN) false negative. Both FP and FN indicate that
the email was labeled incorrectly by our system. We
also present the Precision (TP/(TP +FP)) and Recall
(TP/(TP +FN)) summary statistics, Precision = 0.800
and Recall = 0.650.

VI. DISCUSSION OF RESULTS

It is important to understand the reasons for the sub-
optimal results shown in Table II in order to determine
if the approach is inherently flawed, or improvements
can be made in the future to make the approach more
effective. We will examine the reasons for both false
negative and false positive examples.

6
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 18,2023 at 19:52:23 UTC from IEEE Xplore. Restrictions apply.

A. False Negatives

False negative examples are those emails which are
phishing emails but were not detected as phishing emails
by our approach. In order to consider the reason for false
negatives, we first need to classify different stages of a
social engineering attack. A social engineering attack can
be subdivided into at least 3 parts.

1) Pretext The act of pretexting is the creation of a
scenario to persuade the target to either provide the
desired information, or perform the desired action.
The pretext will typically define a false identity for
the attacker which is trusted by the target to some
degree.

2) Elicitation Elicitation is the process of building a
rapport with the target in order to make the target
comfortable enough to provide the desired infor-
mation or perform the desired action. The target
needs to trust the attacker and elicitation is the
act of building that trust through communication.
Common techniques include flattery, expressing a
mutual interest, and volunteering private informa-
tion [9].

3) Information/Command Goal The culmination of
the social engineering attack is to either request
private information or ask the target to perform an
inappropriate operation. The goal will vary based
on the information desired (“Please confirm your
social security number”) or the operation desired
(“Please click on the link”).

Our detection approach can only detect the final stage
of the attack, the Information/Command Goal. We
observe that many of the undetected phishing emails are
only the first stage in a potential sequence of emails,
and as a result, involve pretexting and elicitation. These
emails may tell a story to engage the victim, and then
request that the victim respond in order to start a conver-
sation. The following email is an example of this type
of phishing email

I KNOW THIS MAIL WILL COME AS SURPRISE
TO YOU BUT IN A BRIEF INTRODUCTION . MY
NAME IS MR TERRY ARUMAH FROM GHANA WEST
AFRICA . I AM A MARKETING MANGER OF
TARKWAH COMMUNITY GOLD MINING CON-PAY IN
TARKWAH COMMUNITY HERE IN THE REPUBLIC
OF GHANA, WE HAVE GOLD DUST AND ALSO
GOLD BAR OUR PRODUCT IS GOOD ,FOR YOU
TO BE SURE OF THE TYPE OF GOLD YOU ARE
BUYING YOU WILL BE ALLOWED TO TEST IT
IN ANY PLACE OF YOUR CHOOSE SO IF YOU
ARE INTERESTED PLEASE YOU CAN CALL US
HERE +2335403977 OR REPLY US HERE OKAY.

GOOD BYE TAKE GOOD CARE OF YOUR SELF .

Notice that the email requests that the victim responds
with the statement, “PLEASE YOU CAN CALL US”,
but no overt attempt is made to gain information or
suggest a forbidden operation. We manually examined
100 of the false negative emails in order to determine the
specific reason why these were not detected. We found
that the majority of these emails, 79%, were this type of
email, only the beginning of a longer sequence of attack
emails.

Although our approach does not detect pretexting or
elicitation, we claim that our approach is still useful in
practice because the Information/Command Goal stage
must eventually occur, and our technique would detect
the attack at that point.

B. False Positives

False positives are the emails which are not phishing
(Enron emails) but are detected as phishing emails by
our approach. We manually examined 100 of the false
positive emails in order to determine the specific reason
why these were falsely detected. We found that the large
majority of these emails, 97%, were detected because
they were found to contain suspicious commands whose
verb-object pairs were found to be in the blacklist. This
occurred with the verb-object pairs such as (call,me),
and (pay,< number >). These verb-object pairs are
part of the blacklist, so they must have had relatively
high TF-IDF scores, but these pairs can also be used in
an innocuous way.

This indicates to us that we will need to improve the
blacklist in the future. We can experiment with changing
the TF-IDF threshold, but this may increase the number
of false negatives. This may indicate that the pair of the
verb and direct object are not sufficient to summarize the
meaning of a command. We will explore using additional
semantic information to add context, such as indirect
objects also contained in the sentence.

VII. RELATED WORK

A commonly used approach to social engineering
detection and prevention is to provide training for em-
ployees to make them aware of the risks [21], [7].
Training-based approaches rely on the human to detect
and prevent attacks manually. The problem with these
techniques is that the vulnerability of a person to a social
engineering attack depends on the person’s emotional
state at the time of the attack, regardless of training
received. Manual attack prevention demands more dis-
cipline than can be expected from most people. For
example, one training-based approach expects a person
to internally answer a set of security-related questions

7
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 18,2023 at 19:52:23 UTC from IEEE Xplore. Restrictions apply.

before providing information to an external agent [2]. It
is hard to believe that a person will consistently maintain
this procedure, especially when under the influence of an
attacker who is expert at manipulating the emotions of a
victim.

A. Automatic Detection

Many previous contributions in phishing detection
rely on non-content-based information associated with
the email, data contained in headers or log file en-
tries. Examples of non-content-based information used
include SMTP headers, NIDS logs, LDAP logs, and cc
lists. Several approaches use this information to evaluate
emails [12], [4], [23]. A notable approach in this category
applied their technique to over 370 million emails and
detected spearphishing campaigns with a false positive
rate of only 0.004% [12]. Several approaches examine
the URLs contained inside the message [6], [3]. Existing
non-content-based information are effective for detecting
email-based social engineering attacks, but would not be
useful for non-email attacks, since the same information
is not available.

Some content-based approaches use natural language
processing (NLP) techniques to extract information from
the email content. For example, EmailProfiler [4] uses
the number of each part-of-speech as a feature, using a
Stanford Parser to perform part-of-speech tagging. Other
techniques attempt to infer some aspect of sentence
meaning based on the presence of particular words. An
example of this type of text analysis is seen in [22] which
defines a set of rules which are regular expressions that
match each expected category of phishing email.

VIII. CONCLUSION

We present the SDA approach to automatically detect
scams. Our approach relies on semantic analysis of the
content, rather than metadata which might be associated
with emails. As a result, our approach can be applied
to detecting scam dialogs which are composed of pure
text. Our results on phishing emails demonstrate that the
use of question answering and verb-object semantic in-
formation is useful in detecting scams. The applicability
of our approach to the detection of any text-based social
engineering attacks is also unique.

IX. ACKNOWLEDGEMENTS

This material is based upon work supported by the
National Science Foundation under Grant No. 1813858.
This research was also supported by a generous gift from
the Herman P. & Sophia Taubman Foundation.

REFERENCES

[1] T. Bakhshi, M. Papadaki, and S. Furnell. A practical assessment
of social engineering vulnerabilities. In Human Aspects of
Information Security and Assurance (HAISA), 2008.

[2] M. Bezuidenhout, F. Mouton, and H. S. Venter. Social engineering
attack detection model: Seadm. In Information Security for South
Africa (ISSA), 2010.

[3] J. Chen and C. Guo. Online detection and prevention of phishing
attacks. In First International Conference on Communications
and Networking in China, Oct 2006.

[4] S. Duman, K. Kalkan-Cakmakci, M. Egele, W. Robertson, and
E. Kirda. Emailprofiler: Spearphishing filtering with header
and stylometric features of emails. In 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC),
volume 1, June 2016.

[5] A. Fader, L. S. Zettlemoyer, and O. Etzioni. Paraphrase-driven
learning for open question answering. In ACL, 2013.

[6] S. Garera, N. Provos, M. Chew, and A. D. Rubin. A framework
for detection and measurement of phishing attacks. In Proceed-
ings of the 2007 ACM Workshop on Recurring Malcode, 2007.

[7] D. Gragg. A multi-level defense against social engineering.
Technical report, SANS Institute, December 2002.

[8] T. Greening. Ask and ye shall receive: A study in social
engineering. SIGSAC Rev., 14(2), Apr. 1996.

[9] C. Hadnagy. Social Engineering The Art of Human Hacking.
Wiley Publishing Inc., 2011.

[10] C. Hadnagy and P. Wilson. Social Engineering: The Art of Human
Hacking. Wiley, 2010.

[11] C. Hauser. U.s. breaks up vast i.r.s. phone scam. New York
Times, July 23 2018.

[12] G. Ho, A. Sharma, M. Javed, V. Paxson, and D. Wagner. De-
tecting credential spearphishing in enterprise settings. In 26th
USENIX Security Symposium (USENIX Security 17), 2017.

[13] A. Karakasilitiosis, S. M. Furnell, and M. Papadaki. Assessing
end-user awareness of social engineering and phishing. In
Australian Information Warfare and Security Conference, 2006.

[14] B. Klimt and Y. Yang. The Enron Corpus: A New Dataset for
Email Classification Research. 2004.

[15] J. A. Kreibich. Using SQLite. O’Reilly Media, Inc., 1st edition,
2010.

[16] M. Lamagna. Heres how much phone scams cost americans last
year... marketwatch.com, April 21 2017.

[17] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard,
and D. McClosky. The Stanford CoreNLP natural language
processing toolkit. In Association for Computational Linguistics
(ACL) System Demonstrations, pages 55–60, 2014.

[18] K. Mitnick and W. Simon. The Art of Intrusion: The Real Stories
Behind the Exploits of Hackers, Intruders and Deceivers. Wiley,
2009.

[19] G. L. Orgill, G. W. Romney, M. G. Bailey, and P. M. Orgill.
The urgency for effective user privacy-education to counter social
engineering attacks on secure computer systems. In Proceedings
of the 5th Conference on Information Technology Education,
2004.

[20] G. Salton and M. J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[21] J. Scheeres. Establishing the Human Firewall: Reducing an
Individual’s Vulnerability to Social Engineering Attacks. Bib-
lioscholar, 2012.

[22] A. Stone. Natural-language processing for intrusion detection.
Computer, 40(12), Dec 2007.

[23] G. Stringhini and O. Thonnard. That ain’t you: Blocking
spearphishing through behavioral modelling. In Proceedings of
the 12th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment - Volume 9148, DIMVA
2015, 2015.

[24] M. Workman. A test of interventions for security threats from
social engineering. Inf. Manag. Comput. Security, 16(5), 2008.

8
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 18,2023 at 19:52:23 UTC from IEEE Xplore. Restrictions apply.

